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Abstract

The automatic recognition of facial behaviours is usually
achieved through the detection of particular FACS Action Unit
(AU), which then makes it possible to analyse the affective be-
haviours expressed in the face. Despite the fact that advanced
techniques have been proposed to extract relevant facial descrip-
tors, the processing of real-life data, i.e., recorded in uncon-
strained environments, makes the automatic detection of FACS
AU much more challenging compared to constrained record-
ings, such as posed faces, and even impossible when the corre-
sponding parts of the face are masked or subject to low or no
illumination. We present in this paper the very first attempt in
using acoustic cues for the automatic detection of FACS AU,
as an alternative way to obtain information from the face when
such data are not available. Results show that features extracted
from the voice can be effectively used to predict different types
of FACS AU, and that the best performance are obtained for the
prediction of the apex, in comparison to the prediction of onset,
offset and occurrence.

Index Terms: computational paralinguistics, FACS action units

1. Introduction

The automatic analysis of affective and social behaviours from
multimodal data has become a major field of research in the last
decade. Recent work have shown that the complementarity of
multimodal signals, such as speech, face and even physiology,
can be successfully exploited to improve the automatic analy-
sis of socio-affective behaviours, in comparison to mono-modal
approaches [1, 2]. However, the processing of data captured in
real-life interactions are challenging, since the variance of be-
haviours expressed is very high in relation to the data available
(sparseness), and because state-of-the-art methods are largely
affected by additive and convolutive background noise. Regard-
ing the automatic analysis of facial expressions, most systems
proposed in the literature focus on detecting facial action units
(AU). These AU represent fundamental actions (e. g., contrac-
tion or relaxation) of individual muscles or group of muscles
from the face, which are involved in the communication of fa-
cial expressions, such as smiling or frowning [3]. The automatic
identification of these AU from video recordings is yet challeng-
ing, even when the data are captured under suitable conditions
[4, 5]. Data captured in real-life environments are even more
challenging, because the parts of the face related to the AU can
be partially masked or not visible at all, or subject to very low
or no illumination, which makes the automatic identification of
the AU much more difficult or even impossible.
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We therefore investigate in this paper the very first attempt
at predicting facial AU from acoustic cues, as an alternative
way to obtain information from the face when such data are not
available or usable. Indeed, the activation of particular facial
AU may impact the supra-glottal configuration of the speech
production system in different ways, which in turn can provide
some acoustic cues for the identification of the activated AU.
Moreover, there exists some literature arguing for a close cou-
pling of speech and facial expressions, all being governed by
a coordinated planning at the cognitive level [6, 7]. Prelimi-
nary work has been conducted on the identification of the oc-
curence of some facial expressions from speech data and has
shown promising results [8]. However, this (only) study was
not really focused on the prediction of AU as those defined in
the Facial Action Coding Systems (FACS) [3]. In this paper,
we focus on the time-continuous prediction of the onset, apex,
offset and occurence of different FACS AU, from an updated
version of the GEMEP database that was used for the first in-
ternational challenge on facial expressions recognition [4].

This paper is structured as follows: we first introduce the
system we designed for the prediction of FACS AU from speech
data (Section 2), we then present the database (Section 3), the
experiments and the results (Section 4) before concluding (Sec-
tion 5).

2. System

We describe in the following sections the acoustic feature sets
that were extracted from speech data and the machine learning
algorithms that were used to predict FACS AU.

2.1. Acoustic feature sets

Acoustic low-level descriptors (LLD) were automatically ex-
tracted from the speech waveform using our open-source
openSMILE feature extractor in its recent 2.1 release [9]. Two
different feature sets were investigated: a large brute-forced fea-
ture set (COMPARE) and a smaller, expert-knowledge based
feature set (GEMAPS). The reader is referred to [10] for a de-
tailed description of the implementation of these features sets.

2.1.1. ComParE

The COMPARE feature set is the result of a continuous refine-
ment of acoustic descriptors used for the analysis of paralinguis-
tics in speech and language. It has been successfully employed
for the automatic recognition of various paralinguistic traits and
states, such as those investigated in the INTERSPEECH Compu-
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Table 1: COMPARE acoustic feature set: 65 low-level descrip-
tors (LLD).

4 energy related LLD Group
RMS energy, zero-crossing rate Prosodic
Sum of auditory spectrum (loudness) Prosodic
Sum of RASTA-filtered auditory spectrum Prosodic
55 spectral LLD Group
MFCC 1-14 Cepstral
Psychoacoustic sharpness, harmonicity Spectral
RASTA-filt. aud. spect. bds. 1-26 (0-8 kHz) Spectral
Spectral energy 250-650 Hz, 1 k—4 kHz Spectral
Spectral flux, centroid, entropy, slope Spectral
Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9 Spectral
Spectral variance, skewness, kurtosis Spectral

6 voicing related LLD Group

Fo (SHS and Viterbi smoothing) Prosodic
Prob. of voicing Voice qual.
log. HNR, jitter (local and §), shimmer (local) | Voice qual.

tational Paralinguistic Challenge (COMPARE), e. g., personality
[11], pathology [12], cognitive and physical load [13] and eat-
ing condition [14]. The latest version of the COMPARE feature
set contains 65 LLD of speech — 130 LLD in total with their
first order derivate. The LLD cover spectral, cepstral, prosodic
and voice quality information, cf. Table 1. Voicing related LLD
are extracted from 60 ms frames using a Gaussian window func-
tion (o = 0.4), whereas all other LLD are extracted from 25 ms
frames using a Hamming window function. All windows are
overlapping and are sampled at a common rate of 100Hz. A
symmetric moving average window of 3 frames length (one pre-
vious, one current, and one future frame) is used to smooth the
LLD, and first order delta regression coefficients are computed
with a context window size of 2 frames for all LLD.

2.1.2. GeMAPS

In contrast to large scale brute-force feature sets, which have
been successfully applied to many speech and music classifica-
tion tasks, e. g., [1, 15], smaller, expert-knowledge based feature
sets have also shown high robustness for the modelling of short-
term paralinguistic states, such as emotion [16, 17]. Indeed, a
minimalistic standard parameter set presents the advantage to
reduce the danger of over-adaptation of classifiers to the train-
ing data in machine learning problems, in comparison to the use
of a brute-forced features set. Some recommendations for the
definition of such a minimalistic standard parameter set for the
acoustic analysis of speech and other vocal sounds has been re-
cently investigated, and has led to the definition of the Geneva
Minimalistic Acoustic Parameter Set (GEMAPS) [18], cf. Ta-
ble 2. Features were mainly selected based on their potential to
index affective physiological changes in voice production, for
their proven value in former studies, and for their theoretical
definition. The implementation of this feature set has been con-
ducted similarly to the COMPARE feature set, i. e., overlapping
windows were used and sampled at a common rate of 100 Hz to
extract the LLD, and a symmetric moving average window of 3
frames length was used for smoothing purpose.

2.2. Machine learning algorithms

We investigated two types of machine learning algorithms to
perform time-continuous prediction of FACS AU from acoustic

1978

Table 2: GEMAPS acoustic feature set: 28 low-level descrip-
tors (LLD).

1 energy related LLD Group
Sum of auditory spectrum (loudness) Prosodic
11 spectral LLD Group
Alpha ratio (50-1000 Hz / 1-5 kHz) Spectral
Energy proportion (0-500 Hz, 0-1kHz) Spectral
Energy slope (0-500 Hz, 0-1kHz) Spectral
Hammarberg index Spectral
MECC 14 Cepstral
Spectral flux Spectral
16 voicing related LLD Group

Fp (linear & semi-tone) Prosodic
Formants 1, 2, 3 (freq., bandwidth, ampl.) | Voice qual.
Harmonic difference H1-H2, H1-A3 Voice qual.
log. HNR, jitter (local), shimmer (local) Voice qual.

features: Support Vector Machines (SVM) [19] and Long Short-
Term Memory Recurrent Neural Networks (LSTM-RNN) [20,
21]. SVM were employed for their well known ability to gen-
eralise well over large features set, whereas LSTM-RNN were
used for their ability to learn long-term contextual dependencies
between features and labels.

3. Database

We describe below the database that was used in our experi-
ments, the procedure that was followed for the coding of the
FACS AU, as well as those that were retained for our study.

3.1. The GEMEP corpus

The Geneva Multimodal Emotion Portrayals (GEMEP) corpus
has been proposed with the goal to provide audiovisual mate-
rial for the analysis of the mechanisms involved in the percep-
tion and the expression of emotions [22]. The GEMEP cor-
pus includes more than 7.000 audiovisual emotion portrayals,
representing 18 emotions portrayed by 10 professional French-
speaking theater actors (5 male, 5 females). Pseudo-linguistic
phoneme sequences (‘nekal ibam soud molen!” and ‘koun se
mina lod belam?’) and a sustained vowel (/aaa/) were uttered
in ongoing interactions between the actors and a professional
director. The expressions were recorded with three digital cam-
eras at a frame rate of 25 Hz, including one camera to zoom in
on the facial expressions of the actors. Speech was recorded
with separate microphones located at each of the three cameras,
and with an additional microphone located over the left ear of
the actor (44.1 kHz frame rate). Recordings were manually seg-
mented and synchronised using a dedicated software [22].

3.2. FACS AU coding and selection

A subset of the GEMEP corpus was designed, using only the
pseudo speech sentences for which the emotional expressions
were best recognised by humans, while keeping a balance in
the number of instances obtained for each actor. 158 portrayals
were retained in total and annotated in terms of facial expres-
sion following the guidelines provided in the FACS manual [3].
All AU were annotated by a certified FACS coder [23], using
the annotation software Anvil 4.5 [24]. Start and end times for
the onset, apex, and offset of each AU were recorded. The on-
set begins on the frame where the first appearance change as-
sociated with the AU was observed. Although periods of little



Table 3: Description, number of instances (in thousands) and
inter-rater agreement (% of agreement and Cohen’s k) for each
AU selected from the GEMEP corpus; r.: raiser, p.: puller.

AU | Description On. Apex Off. | %ag. K
1 | Inner brow r. 2.73 523 491 90.9 | 0.60
2 | Outerbrowr. | 2.34 529 476 | 89.9 | 0.72
4 | Brow lowerer | 3.29 7.41 2.79 | 952 | 0.63
6 | Cheek raiser 294 11.0 1.73 | 67.5 | 0.53
7 | Lid tightener | 3.50 10.1 391 | 553 | 0.30
10 | Upperlipr. 331 7.2 505 | 47.7 | 0.05
12 | Lipcornerp. | 6.86 10.8 5.63 | 57.8 | 0.37
17 | Chin raiser 239 332 323 | 755 0.19

change could be observed during the onset phase, they were still
considered part of the onset provided a subsequent increase was
observed before the AU reached a plateau, i.e., the apex. The
apex begins on the frame that follows the last increase in in-
tensity observed for the particular AU. Finally, the first sign of
decrease in the AU’s intensity determined the end of the apex
and the start of the offset. The decrease should be continuous
(i.e., last at least two frames) and terminated with the disap-
pearance of the AU, or with a new increase in intensity, which
marked a new onset phase. A new AU was recorded when it ap-
peared out of a neutral position or when it was seen increasing
after a decrease in intensity.

In order to provide a sufficient amount of data to perform
machine learning in suitable conditions, we selected a subset of
the coded AU based on a minimum of 5% of occurence for on-
set, apex and offset. Over a total of 39.1 k instances, a subset of
8 different AU was retained for our experimentsl, cf. Table 3.
Frame-based inter-rater reliability was calculated for 10 videos
(total of 824 frames) coded by two certified FACS coders. The
percentage of agreement and the Cohen’s  coefficient between
these two coders are shown in Table 3. The analysis shows that
raters agree more than chance alone would predict (all p-values
for k < .001). Low values for x can be partly explained by the
low prevalence of certain AU in the coded portrayals, therefore
percentage of agreement should be taken into account. A revi-
sion of the coding used in [4] was performed and problematic
annotations corrected.

4. Experiments and results

We describe in the followings the experimental setup and the
results obtained in the time-continuous prediction of FACS AU
from acoustic cues.

4.1. Experimental setup

The speech recordings captured by the head-mounted micro-
phone were post-processed in order to optimise the synchroni-
sation with the video data, using the same procedure as in [25].
Obtained wave files were normalised to 0dB peak amplitude to
compensate for various levels of loudness due to the expres-
sion of emotions. We did not use any voice activity detection
algorithm because the portrayals were already segmented and
contained very few pauses or only short ones. LLD were ex-
tracted from the normalised speech wave form, using either the
COMPARE or the GEMAPS feature set, and binary labels (e. g.,
‘unactive’ vs. ‘active’) were defined according to the timecode

'An exception was made for the AUOG6 since it was below the 5%
threshold only for its onset.
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provided by the FACS coding of the selected AU. Variability of
the acoustic features over the actors was compensated by per-
forming a speaker dependent z-score normalisation.

For all the experiments, we used a leave-one-speaker-out
(LOSO) evaluation framework, to ensure speaker independency
in the prediction of the AU. Each combination of AU and activa-
tion, i. e., onset, apex, offset or occurence, was processed sepa-
rately. To cope with imbalanced class distribution, up-sampling
of the underrepresented class was performed prior to the train-
ing of SVM. This procedure was not used for the training of
LSTM-RNN, as it will have broken the time continuum. SVM
were trained with the Sequential Minimal Optimisation (SMO)
algorithm implemented in the Weka toolkit [26] and a linear
kernel was used. The complexity parameter was fixed to a low
value (C' = 1072) to ensure generalisation abilities.

The LSTM networks have a layout composed of 3 hidden
layers with 156, 256 and 156 units respectively. The learning
rate was set to 10> for all the experiments and a cross-entropy
cost function was used for the training of the networks. To
improve generalisation and prevent overfitting, Gaussian noise
with a standard deviation 0.1 was added to all input features. A
logistic function was used for both the activation function and
the output layer. Binary classification of the AU was achieved
by thresholding the output with the observed median value. We
used our CURRENNT toolkit for the implementation of LSTM-
RNN [27].

4.2. Results

Performance is measured as the unweighted average recall
(UAR) of the classes, which represents the accuracy in a dataset
with equal class priors. This is especially important when the
class distribution is imbalanced and high accuracy could be
achieved by picking the majority class. It is calculated by the
sum of recall-values (class-wise accuracy) for all classes di-
vided by the number of classes. This is the standard measure
of the INTERSPEECH COMPARE Challenge series [28].
Results obtained in the prediction of the different types of
AU with the SVM are given in Table 4. Except for the onset
of AUO6 (Cheek raiser) and the offset of AUO7 (Lid tightener),
all values are above the chance level (UAR = 50%), which
thus show that speech contains relevant cues for the prediction
of various FACS AU. The GEMAPS minimalistic feature set
shows an higher robustness than the COMPARE brute-forced
features set, as two third of the best results are obtained with
the former set. The best recognised AU in terms of occurrence
are those related to the raising of the inner and outer eyebrows,
i.e., AUOI and AUO2. This result might be explained by the
fact that eyebrow movements have been shown to correlate well
with the fundamental frequency [7]. However, the performance
obtained on the detection of AU0O4 (Brow lowerer) is slightly
lower than for AUO1 and AU02, which suggests an higher de-
gree of correlation between eyebrows raising and speech than
for eyebrows lowering. The apex of the AU is generally better
recognised than their transitions, i.e., onset or offset, or their
occurence. Indeed, the apex of the AU may have generated less
variability in the features as well as more prominent cues.
Results obtained in the prediction of the different types of
AU with the LSTM-RNN are given in Table 5. All values are
significantly above the chance level, and almost all better than
the results obtained with the SVM (p < .05). This result thus
shows the importance of using contextual information in the
modelling of AU from speech data, as it was also found for
others paralinguistic tasks [1, 29]. Even if the performance is



Table 4: Results (%UAR) for different AU prediction from COMPARE and GEMAPS acoustic feature sets with SVM; LOSO evaluation.
Values given in bold style correspond to the best performance obtained for each AU, i. e., for either onset, apex, offset or occurence,

with either COMPARE or GEMAPS acoustic features set.

COMPARE GEMAPS
AU | Onset Apex Offset | Occu. | Onset Apex Offset | Occu.
1 58.34 63.00 5826 | 62.28 | 5398 64.83 5638 | 63.30
2 5539 6042 5134 | 61.72 | 5529 62.09 5231 | 60.77
4 57.82 53.89 5558 | 5548 | 57.18 5540 5832 | 58.99
6 48.02 5331 51.21 | 52.16 | 46.01 53.83 5222 | 54.48
7 55.02 53.00 54.10 | 48.67 | 53.14 54.82 5199 | 52.60
10 5319 5198 5412 | 51.68 | 53.71 5339 53.01 | 46.25
12 54.05 5440 5276 | 53.43 | 52.52  51.54 5497 | 5422
17 56.05 6252 6029 | 59.29 | 57.96 62.57 56.67 | 59.75
Avg. | 5474 56.57 54.71 | 5559 | 53.72 5731 5448 | 56.30

Table 5: Results (%UAR) for different AU prediction from COMPARE and GEMAPS acoustic feature sets with LSTM-RNN; LOSO
evaluation. Values given in bold style correspond to the best performance obtained for each AU, i. e., for either onset, apex, offset or
occurence, with either COMPARE or GEMAPS acoustic features set.

COMPARE GEMAPS
AU | Onset Apex Offset | Occu. | Onset Apex Offset | Occu.
1 61.88 6454 59.48 | 67.03 | 62.08 67.96 61.18 | 67.62
2 6438 6743 6227 | 69.33 | 64.60 7099 6298 | 70.90
4 61.35 6621 63.33 | 64.66 | 61.90 66.67 63.19 | 67.05
6 64.01 65.17 6335 | 63.78 | 6425 67.71 63.17 | 63.11
7 62.71 56.62 5829 | 5447 | 62.85 59.74 6146 | 52.72
10 61.82 60.53 5639 | 6039 | 61.92 61.03 58.02 | 60.34
12 59.34  59.85 5671 | 58.67 | 58.04 60.92 57.77 | 58.72
17 6047 6478 6234 | 6453 | 61.62 6494 63.13 | 65.88
Avg. | 62.00 63.14 60.27 | 62.86 | 62.16 65.00 61.36 | 63.29

significantly higher when using LSTM-RNN instead of SVM,
the same observations hold: (i) the GEMAPS minimalistic fea-
tures set is more robust than the brute-force COMPARE features
set, (ii) the apex of the AU is better recognised than their transi-
tions (i. e., onset, offset) or occurence and (iii) the inner / outer
brow raiser are the best recognised AU. An additional interest-
ing result is that the AU12, which is involved in smiles, is the
one that achieved the worst performance in average, which can
be related with the low performance usually obtained on the
prediction of emotional valence from speech data [1]. One may
further notice that the AUs involving muscles located around the
mouth, e.g., AU10 and AU12, are usually not considered for
the automatic prediction of FACS AU when speech is present
[4, 5], because it is difficult to distinguish physical actions that
are necessary to produce speech from those that are performed
for conveying non-verbal information.

5. Conclusions

We investigated in this paper the very first attempt in us-
ing acoustic features to predict facial action units, as an al-
ternative way to obtain information from the face when such
data are not available. We used as acoustic features a brute-
forced set (COMPARE) and a minimalistic set (GEMAPS). Ma-
chine learning algorithms, such as SVM and LSTM-RNN were
trained to predict FACS coded AU from the acoustic features
at a 10ms frame rate and in a leave-one-speaker-out evalua-
tion framework. Results obtained on the GEMEP database have
shown that speech contains relevant cues for the prediction of
various facial action units, especially for the apex, and that the
use of contextual information, by using LSTM-RNN instead
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of SVM, helps to improve the performance. However, these
promising results need to be confirmed on other databases, such
as those used in [5], because the GEMEP corpus contains few
instances of speech with a constrained production, which makes
the recognition of the FACS AU from acoustic data easier.

Future work will thus consist in exploiting larger databases
with unconstrained speech production to perform the FACS AU
detection from acoustic features. Models of speech rhythm,
such as those introduced in [30, 31], will be used as addi-
tional acoustic features since the temporal dimension may con-
vey some relevant information for the detection of FACS AU.
The automatic prediction of FACS AU’s intensity will be also
investigated, as well as the fusion with state-of-the-art system,
to quantify the complementarity of acoustic descriptors with
facial descriptors for the automatic recognition of FACS AU.
Emotion recognition experiments will also be performed with
automatically detected FACS AU from acoustic data to evaluate
the interest of such approach for affective computing.
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